Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

COND(true, x, y) → AND(gr(x, 0), gr(y, 0))
COND(true, x, y) → P(x)
COND(true, x, y) → GR(x, 0)
COND(true, x, y) → GR(y, 0)
GR(s(x), s(y)) → GR(x, y)
COND(true, x, y) → COND(and(gr(x, 0), gr(y, 0)), p(x), p(y))
COND(true, x, y) → P(y)

The TRS R consists of the following rules:

cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND(true, x, y) → AND(gr(x, 0), gr(y, 0))
COND(true, x, y) → P(x)
COND(true, x, y) → GR(x, 0)
COND(true, x, y) → GR(y, 0)
GR(s(x), s(y)) → GR(x, y)
COND(true, x, y) → COND(and(gr(x, 0), gr(y, 0)), p(x), p(y))
COND(true, x, y) → P(y)

The TRS R consists of the following rules:

cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


GR(s(x), s(y)) → GR(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(GR(x1, x2)) = x_2   
POL(s(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

COND(true, x, y) → COND(and(gr(x, 0), gr(y, 0)), p(x), p(y))

The TRS R consists of the following rules:

cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


COND(true, x, y) → COND(and(gr(x, 0), gr(y, 0)), p(x), p(y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(gr(x1, x2)) = (2)x_1   
POL(true) = 1   
POL(false) = 0   
POL(p(x1)) = (1/4)x_1   
POL(s(x1)) = 1 + (4)x_1   
POL(and(x1, x2)) = 1/2 + (1/2)x_1   
POL(COND(x1, x2, x3)) = (1/4)x_1 + (4)x_2   
POL(0) = 0   
The value of delta used in the strict ordering is 1/8.
The following usable rules [17] were oriented:

p(s(x)) → x
p(0) → 0
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

cond(true, x, y) → cond(and(gr(x, 0), gr(y, 0)), p(x), p(y))
and(true, true) → true
and(x, false) → false
and(false, x) → false
gr(0, 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.